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Abstract 

Three  types of  orbital energies,  classified as ionizable, configurative, and additive, are found for Ca to Cu. The ionizable 

orbital energies explain the easier ionization of 4s than 3d in M[Ar]4s23d N. The configurative orbital energies select the ground 
configuration by approximating the Hartree-Fock energy of the transition M[Ar]4s23d N --* M[Ar]4s~3d N÷~. The additive orbital 
energies indicate the changes in the valence and core orbitals caused by the above transition. The changes in both the valence 
energy and the core energy are dominated by the change in valence exchange energy. 

Keywords: Atomic orbital energies; Calcium; 3d Transition elements 

I. Introduction 

The connection between the ground-state electron 
configurations of the atoms Ca to Cu and the relative 
energies of their 4s and 3d orbitals has been elusive. 
One problem is that the orbital energies change when- 
ever the configuration changes. Another problem is 
that the total energy of each configuration is not simply 
the sum of its orbital energies. A final problem is that 
the Hartree-Fock energy EHF of each configuration is 
too high, because it does not provide adequate cor- 
relation between the probabilities of two electrons at 
various positions [1]. However, for the transition 
M[Ar]4s23d N ~ M[Ar]4s~3d N + 2, AEHF is fairly accurate 
(at least for Ca to Cr), because the correlation energies 
are similar in the two configurations [2]. 

In a study of average orbital energies, Claydon and 
Carlson (CC) noted that E4~ is below e3d in K and Ca, 
and that e3~ drops below e4~ in Sc and beyond [3]. 
Griffin et al. studied the change in effective potential 
energy that is responsible for the sudden drop in e3d 
[4]. Evidently unaware of these studies, Pilar concluded 
that E4~ is always above e3d in K and beyond [5]. 

Vanquickenborne, Pierloot, and Devoghel (VPD) 
solved for orbitals that are consistent with the weighted 
average of each configuration [6]. This average includes 
all terms with allowed values of spin S and angular 
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momentum L. The ground term of each configuration, 
given by Hun~l's rules (highest S and highest L for 
that S), is surely of more interest to most chemists. 
One reason VPD gave for using the average is to be 
able to approximate the ionization energy of an electron 
i in an open subshell as -Ei via Koopmans's theorem 
[7]. However, this can be done for the ground term 
simply by calculating e~ for the spin-orbital that is vacated 
to give the ground term of the ionized configuration. 
We call such a spin-orbital and its energy ionizable. 
We shall find the ionizable e4s and e3~ in the ground 
term of M[Ar]4s23d N in Sc to Cu. 

VPD showed that E4s and e3~ have different values 
in 4s23d u than in 4s13d N÷a, and that a third value of 
E3~ is found in 4s°3d N÷2. They showed that the ground 
configuration cannot be determined by comparing these 
values of ~4s and e3d- 

VPD also used their average orbitals of 4s~3d N ÷ ~ to 
calculate the average energy of 4s23d ~. In that frozen- 
orbital approximation, the energy for the average of 
the transition 4sZ3d N ~ 4s~3d N÷a is 

z~d~av~ = e3a(4s13d N+ ~) - e4s(4s23d N) (1) 

VPD found AEavl < AEavscF, where AEavsc~ is the energy 
with self-consistent fields in both configurations. If VPD 
had frozen the orbitals of 4s23d N in the right-hand side 
of Eq. (1), they would have found AEa~2 > AE,~scv. With 
AEa~ too small and AEa~2 too large, the average of 
the two should be about right. We shall pursue this 
approach for the transition between the ground terms 
of the two configurations in Ca to Cu. 
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Blake studied the d-d Coulomb and exchange con- 
tributions to the ionization energy of M 2 + [Ar]3d N [8]. 
The formulas that he lists for d N --* d N-1 are actually 
for d N-1 ~ d °. His AEsop is the valence repulsion of 
the Nth d electron, whose • is ionizable. In effect, 
Blake approximated this ionizable e3a as AEsop with 
constant orbitals from Ti 2+ to Zn 2+. Within this ap- 
proximation; Blake showed that the drop in ionization 
energy at Fe 2+ 3d 6 is due more to the loss of exchange 
stabilization than to the extra Coulomb repulsion be- 
tween two electrons in the same orbital. 

Within Blake's approximation, his formulas and his 
conclusion also apply to the ionization of the Nth d 
electron from neutral M[Ar]4sZ3d N. We shall compare 
the ionizable E3d and the experimental 3d ionization 
energy with the valence exchange stabilization of the 
Nth d electron in neutral Sc to Cu. 

The loss of exchange stabilization at d 6 that causes 
a drop in the d ionization energy at Fe and Fe z+ also 
causes a jump in the transition energy at Mn 4s23d 5 
--* 4s13d 6. CC concluded that exchange stabilization 
allows the 3d orbitals to shrink and thereby to exert 
greater repulsion on the 3s and 3p electrons, which in 
turn causes the 3s and 3p orbitals to expand. We shall 
examine the effect of the exchange energy on the core 
and valence energies. 

VPD and CC both attempted to separate EHv into 
Ar core and valence energies: 

EHF=E~+E~ (2) 

The problem here is where to put the core-valence 
electron repulsions. VPD put them in E~, while CC 
put them in E~. Later, when CC chose to include as 
valence electrons all but the Ne core, they switched 
and put the core-valence repulsions in Ev. 

There is no reason to assign the repulsion between 
two electrons i and j entirely to either i or j (unless 
it is done alternately to both, as in E~ and •j). In this 
paper we present a meaningful way of assigning both 
i and j a portion of the repulsion between them. We 
use these additive electron repulsions to define additive 
orbital energies, which enable us to find meaningful 
values of E~ and E~ in Eq. (2). 

2. Procedure 

2.1. Orbitals 

The orbitals in this work are for the ground terms 
of M[Ar]4s23d u and M[Ar]4s13d u+a in Ca to Cu. Most 
of the orbitals are due to Tatewaki and Sekiya (TS) 
[9,10]. The orbitals for Ca[Ar]4s~3d a are in Table 1. 
We kept most of the s and p basis functions of Ca[Ar]4s 2, 
but we optimized the d exponents, two p exponents, 
and all coefficients. 

We also used the orbitals of M[Ar]4s23d N in the 
configuration of M[Ar]4s13d u+~ and vice versa. When 

we used the Ca[Ar]4s 2 orbitals in the Ca[Ar]4s13d 1 
configuration, we used the 3d orbital from the 
Ca[Ar]4s~3d 1 orbitals. This procedure left Ca hardly 
comparable to the other atoms, but it sufficed. 

All energies are in hartrees; 1 hartree -- 2625.56 kJ 
mol-  1. 

2.2. Notation 

Elaborating on VPD [5], we use the population of 
the 4s orbital to number the configurations, i.e., 1 for 
4s13d u+l  and 2 for 4s23d u. Likewise, we number the 
orbital sets 1 and 2, where set 1 is self-consistent with 
4s13d u+l,  and set 2 is self-consistent with 4s23d N. The 
orbital set number is written first, followed by the 
configuration number as a superscript. Thus (12) means 
orbital set 1 in configuration 2, and (21) means orbital 
set 2 in configuration 1. Of course, only (11) and (2 2) 
are self-consistent. 

Each neutral atom M has Z electrons. We assign 
the first Z - 1  electrons to the ground term of 
M+[Ar]4s13d N, so the Zth electron is the second 4s 
electron in M[Ar]4sZ3d N and the N + l s t  3d electron 
in M[Ar]4s13d N+I. We write the self-consistent orbital 
energies of electron Z as E4sz(22)---1~4s2(22) and 
e3az(11)=e3dU+l(11), with Z, 2, or N + I  on the same 
line as 4s and 3d. Likewise, we write the self-consistent 
orbital energies of the first 4s electron as e4s~(22) and 
e4sa(11). The average e4s of TS [9,10] for (11) is identical 
to our e4sl(ll), but their e4s for (22) is the average of 
our e4s~(22) and e4s2(22). The e3d of TS for (22) is the 
average • of the N 3d electrons, which we write as 
gadN(22), with the N above the line of 3d. In contrast, 
we write •3tiN(22) for the Nth 3d electron in the aufbau 
sequence. 

When both orbital sets are used to calculate a property 
in the same configuration, as in •3az(11) and •3az(21), 
the average of the two results is labeled with both set 
numbers, as in g3dZ(121). 

~3dz(121) = [ e3dZ(11) + •3dz(2a)]/2 (3) 

i4 (122) = [ •4~z(12) + •4 (22)1/2 (4) 

The change in any property in this paper is from 
configuration 2 to 1. If the change is from (22) to (11), 
the orbital sets and configurations are understood with- 
out being specified in the A of any property. For example, 
AEHF=EHF( l l ) - -EHF(22  ). If the orbital set is frozen, 
say at 1, we write AEHF(1)=EnF(ll)--EHF(12), for 
example. We define 

A •z (1 )  = •3 z(11) - • .sz(12) (5) 

and Aez(2) likewise. Notice that AEHv(1)=A•z(1) and 
AEHF(2)=Aez(2). We subtract Eq. (4) from Eq. (3) 
and find 
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Table 1 

Orbitals of  Ca[Ar ]4s~3d  I 3D; total energy - 6 7 6 . 6 7 7 2 5  " 

173 

l s  2s 3s 4s 

Energy ~ - 149.27515 - 16.71637 - 2 . 1 4 2 7 3  - 0 . 1 9 1 0 0 "  

e - 192.10287 - 31 .86788 - 6 .08437  - 0 .40678  

n E x p o n e n t  Coef f .  

1 29 .61078 0 .038241 - 0 .009595 0 .005745  - 0 .001978  

1 19.42526 0 .948530  - 0 .278221 0 .090541 - 0 .018963 

2 18.21865 0 .007826  - 0 .114114  0 .053237  - 0 .014748  

2 10.82411 0 .021225 0 .418484 - 0 .178649  0 .045844 

3 10.29046 - 0 .012484  0 .286601 - 0 .045145 - 0 .002414 

3 8 .01725 0 .000503  0 .446605 - 0 .334255 0 .094252  

3 4 .53259  - 0 .001755 0 .029987 0 .232406  - 0 .090035 

3 3 .32037 0 .001365  - 0 .012019  0 .612083  - 0 .097686  

3 2 .46463 - 0 .000541 0 .004554 0 .320845 - 0 .170358  

3 1 .12200 0 .000106  - 0 .000660  0 .003640  0 .300344  

3 0 .75300  - 0 .000067  0 .000412  - 0 .002017  0 .770937  

3 0 .45000  0 .000017  - 0 .000102  0 .000399  0 .017093  

2p 3 p  

Energy ~ - 13 .52606 - 1 .25022 

e - 31 .00278  - 4 .84536  

n E x p o n e n t  Coef f .  

2 25 .17785 0 .002613  - 0 .000381 

2 12.37123 0 .164947  - 0 .055956  

2 7 .33368 0 .782434  - 0 .160834 

2 5 .21639  - 0 .028594  - 0 .714725 

2 4 .74252  0 .121528  0 .439279 

2 2 .99163 - 0 .013900  0 .172456  

2 2 .13000 0 .005365 0 .874279  

2 1 .40000 - 0 .000754  0 .108196  

Exponent 
8 .55000  

3 .96000  

2 .16600  

1 .09600 

0 .61600  

3d  

- 0 . 1 2 6 1 6  

- 1.07140 

Coeff .  

0 .013218  

0 .145762  

0 .296465 

0 .406716  

0.392511 

" For comparison, Ca[Ar]4s z has total E = - 6 7 6 . 7 5 8 1 7 ,  4s  E = - 0 . 1 9 5 5 3  [10]. 

A~z(12) = g3oz(121) - ~4~z(12 z) 

= [ kez(1) + Aez(2)]/2 

= [ AEHF(1) + AEuF(2)]/2 

(6a) 

(6b) 

(6c) 

2.3. Experimental ionization and promotion energies 

Experimental energies for the ground terms of 
M[Ar]4s23d N, M[Ar]4s]3d u+l, M+[Ar]4s13d N, and 
M+[Ar]4s23d ~v-1 were taken from the works of Sugar 
with Corliss and Musgrove [11]. The term average was 
computed by weighting each J state by the factor 2 /+  1, 
The energy AEexp for the transition M[Ar]4s23d u 
M[Ar]4s~3d N÷~ is simply the difference between the 
term averages. Each of the ionization energies I4~2 and 
I3dN of M[Ar]4s23d N is the difference between the 
appropriate ion and atom term averages plus the ground- 
state ionization energy. 

2.4. Additive interelectronic repulsions 

Slater found a useful way to apportion the charge 
of each electron j that repels i [12(a)]. He set i at the 

radius ri of its maximum charge density. He then 
apportioned the 1-charge of each other electron j into 
its inner screening, where ~ < ri, and its outer screening, 
where r~>ri. He showed that the orbital exponent of 
i in level n~ is approximately ZJn~, where Zf~=Z-si, 
and -s~ is the total inner screening of/. Slater's screening 
constants are empirical rules for estimating s~ and hence 
Zf~ [12(b)]. See below for more about Z~. 

We define /~ji to be the inner repulsion of i by j. 
The position of j inside i in Rji symbolizes that rj <r~. 

-Ryi= f f ~akiyPiZ(ri)pyE(rj)rJ k/r~k+ldrJdri-~(m`i'm*j) 
ri~O rj=O 

X f f EbkqPi(ri)Pj(ri)Pi(l~)ej(rj)ryk/rik+ldrJdrik (7) 
ri=O O~0 

In Eq. (7) Pi(rj) = rjRi (rj), where Ri(ri) is the radial wave 
function of i for spherical coordinates [12(c)], and ak~j 
and bkij stand for Slater's ak(e~mn; ejmej) and bk(eimn; 
ejmq) [12(d)]. The subtotal repulsion of i is ~ :  

= Z R j ,  (8) 
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and the total interelectronic repulsion is the sum over 
i of R,.. 

The second double integral in Eq. (7) is the inner 
exchange energy of i with j, ~ .  We shall need the 
inner valence exchange energy of i, 

~"vi---~ £ ( v ) S j i  ( 9 )  

and the total intervalence exchange energy 

X',~ = X(v)X.  (10) 
i 

where v includes the 4s and 3d electrons. The total 
(inner+ outer) valence exchange energy of i is 2X~i. 

Blake noted that X'w (his EK) is often smaller with 
the cubic real d orbitals than with the imaginary orbitals 
indexed by me [8]. We shall calculate -2Xv3dN(22) and 
-AX,~ with both m, and cubic real orbitals. 

2.5. Additive orbital energies 

With additive interelectronic repulsions, the con- 
struction of additive orbital energies e~ is easy. 

ei= Ti-a---~i +.Rti ( l l a )  

= T,+ V, ( l lb)  

where F~. = - ~ + Ru. 

EnF = £ e ;  = £ T , +  £V~ (12a) 
i i i 

= EN,,eg,,e (12b) 

where N,e is the number of electrons in the ne subshell 
and d,, is their average energy. 

We use g3~N(1 a) for the average e of the first N 3d 
electrons. We partition AEHv for the 4s23d N ~ 4sm3d u + 
transition via Eq. (2) as follows. 

AEv = Aez + Ae4si + NAd3dN (13) 
3 3 

AE~ = 2 E Ag,. + 6 E Ag, p (14a) 
n = l  n = 2  

= AEN. + 2Ad3~ + 6Ad3p (14b) 

AEN. is the change in energy of the neon core. 
The simplest formula for AEHF comes from Eq. (12b): 

AEnv = EN,~(I')e,~(I') - EN,,,,(2z)g,,e(2 z) (15) 
n l  rid'  

We recommend Eq. (15), or its analogue for other 
systems, when there is no need to isolate Aez. The 
subtotals AErie, AE~, and AEv from Eq. (15) are identical 
to those from Eqs. (13) and (14). To adapt the data 
in Table 2 for Eq. (15), the following two equations 
are needed: 

g,~(22) = g,~2(2 z ) = [ e4~, (22 ) + e4~2(22)]/2 (16) 

g3d(1 a) = ~3dN+ 1(1') 

= [Ng3~N(1 ~) +e3~(l ' )] / (N+ 1) (17) 

The virial theorem [12(e)] requires: 

£ P . =  - 2£T,. 
i i 

(18) 

When the left-hand side of Eq. (18) is substituted for 
the right-hand side and vice versa into Eq. (12a), we 
find 

EHF = E P d 2  (19) 
i 

Env = E - L (20) 
i 

Hence F'd2 and -7"i are also additive orbital energies. 
In practice, the virial theorem is not satisfied perfectly, 
so Eqs. (19) and (20) are less accurate than Eq. (12). 
We compare values of -V ' J2  and ~ with those of -e i  
for Fe in Table 2. 

Slater used his values of Za to calculate approximate 
values of T~ for use in Eq. (20). In hartree units, his 
formula is 

Z = (Zdn,)2/2 

but for ni=4 he used n*=3.7 [12(b)]. 

(21) 

3. Results and discussion 

3.1. Ionizable orbital energies in M[Ar]4s23d u 

The ionizable orbital energies E4s2(22) and E3ou(22) 
are compared with the corresponding ionization energies 
in Fig. 1. Koopmans's theorem correctly predicts easier 
ionization of 4s than 3d, but the experimental difference 
is smaller than expected from the orbital energies. 

Fig. 1 also shows values of the valence exchange 
energy -2~v3,~v(22). These values are often smaller in 
magnitude with real orbitals than with me orbitals, but 
the similarity is more striking than any difference. The 
net (Coulomb - exchange) repulsion in e3~ is the same 
for both real and me orbitals. The correlation of E3~v 
and -I3au with - 2~v3,~v is obvious. 

3.2. AEnF, AE~,p, and -AXvv for M[Ar]4s23d N 
M[Ar]4s13dN+ 1 

These values are shown in Fig. 2. Again, the cor- 
relation of AEI~F and zLE'~p with A,Y,,, is obvious. See 
also Fig. 3. 

The values of AEHF and AEe~p are also in Table 3. 
CC [3] attributed the difference between AEex p and 
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Table 2 
Additive orbital energies in M[Ar]4sZ3d N (top) and M[Ar]4sl3dN+t; values of - e i  for Ca to Cu, and -~'u/2 and T,¢ for Fe; top (2z), bottom 

(1') 

- -  e , s  - -  e z s  - -  e 2 p  - -  e 3 s  - -  e 3 p  - -  e 3 d  - -  e4~z - -  e4~i - E[Ar4sZ3d 'v] 

Ca 192.0976 31.8540 30.9867 6.1605 4.9407 0.4849 0.4849 676.7582 
Sc 212.1436 35.8640 35.0135 7.1889 5.8879 2.8338 0.5480 0.5524 759.7357 
Ti 233.1908 40.1187 39.2872 8.2305 6.8436 3.6731 0.5936 0.6013 848.4060 
V 255.2382 44.6142 43.8048 9.3104 7.8381 4.4729 0.6359 0.6467 942.8843 
Cr 278.2859 49.3501 4&5652 10.4328 8.8761 5.2898 0.6759 0.6896 1043.3098 
Mn 302.3339 54.3254 53.5685 11.5905 9.9494 6.1641 0.7111 0.7274 1149.8662 
Fe 327.3806 59.5389 58.8127 12.8368 11.1180 6.9677 0.7637 0.7771 1262.4436 
Fe " 326.5372 59.9049 58.8830 12.7200 11.0760 7.1294 0.7901 0.7969 1262.4412 
F e b  325.6937 60.2709 58.9533 12.6032 11.0340 7.2910 0.8166 0.8166 1262.4386 
Fe ~ 330.24 59.68 59.68 12.09 12.09 2.17 0.51 0.51 1248.65 
Co 353.4278 64.9913 64.2998 14.1195 12.3230 7.8526 0.8113 0.8214 1381.4145 
Ni 380.4750 70.6821 70.0290 15.4497 13.5765 8.7878 0.8575 0.8643 1506.8709 
Cu 408.5220 76.6114 76.0006 16.8286 14.8792 9.7710 0.9026 0.9060 1638.9500 

- e,, - ez, - e2p - e3, - g3p - E3oN ~ - e3d z - e4s 1 - E[Ar4s3d N + '] 

Ca 192.1029 31.8679 31.0028 6.0844 4.8454 1.0714 0.4068 676.6772 
Sc 212.1501 35.8810 35.0330 7.0840 5.7530 2.1608 2.1608 0.4312 759.6988 
Ti 233.1975 40.1360 39.3071 8.1192 6.6996 2.9926 2.9853 0.4702 848.3861 
V 255.2452 44.6321 43.8247 9.1939 7.6873 3.7916 3.7805 0.5103 942.8798 
Cr 278.2932 49.3685 48.5860 10.3010 8.7074 4.6254 4.6254 0.5439 1043.3564 
Mn 302.3402 54.3429 53.5878 11.4914 9.8210 5.4084 5.3281 0.5721 1149.7439 
Fe 327.3877 59.5568 58.8329 12.7180 10.9690 6.2423 6.1969 0.5899 1262.3776 
Fe " 326.5468 59.9162 58.8984 125792 10.9148 6.4005 6.3778 0.6333 1262.3771 
F e b  325.7058 60.2756 58.9638 12.4404 10.8606 6.5586 6.5586 0.6767 1262.3766 
Fe ~ 330.24 59.68 59.68 12.09 12.09 1.93 1.93 0.39 1248.53 
Co 353.4351 65.0093 64.3205 13.9923 12.1655 7.1251 7.0880 0.6053 1381.3584 
Ni 380.4826 70.7008 70.0501 15.3154 13.4114 8.0521 8.0217 0.6188 1506.8240 
Cu 408.5302 76.6302 76.0222 16.6793 14.6974 9.0341 9.0324 0.6270 1638.9637 

_s ~'J2. 
b The. 

¢ T ,¢  from Eq. (21) via Slater's rules [12(b)]. 
d Each e3jN is the average e of the first N 3d electrons. 

0 . 0 7  

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 

-0,6- 

-0.7 

- 2 X v 3 d  N 

m I ~ "v- 

e~2 

"\~ -14s 2 

SC Ti V Cr Mn Fe Co Ni Cu 

Fig. 1. Ionizable orbital energies, ionization energies [11], and the 
valence exchange energy of the Nth 3d for me and cubic real orbitals 
(set 2) in M[Ar]4s23d N. 

0.14- 

0.12- 

0.10- 

0.08- 

0.06 

0.04 - 

0.02 

0.00 - 

-0.02- 

-0.04- 

-0.06- 

-0.08- 

-0.10- 

-0.12 
Ca Sc Ti V Cr Mn Fe Co Ni Cu 

Fig. 2. Changes in the Hartree-Fock energy, the experimental energy 
[11], and the intervalence exchange energy for me and cubic real 
orbitals in M[Ar]4s23d N ~ M[Ar]4s'3d 'v+'. 

AF, HF mainly to the change in correlation energy. Their 
values of AEHF can be obtained by subtracting their 
AE~o,, from their &Ee,p. Their values of AF-nF are higher 
than those in Table 3 by as much as 0.004 hartree. 

3.3. Configurative orbital energies 

The relationship between ionizable and configurative 
orbital energies is illustrated for Sc as follows: 



176 J.L. Bills, R.L. Snow / Inorganica Chimica Acta 229 (1995) 171-178 

1.5- 

1.0 

0.5 

0.0 

-0.5- 

-1 O- 

-I .5 

AEC 

s 

AEH F 

AE v 

Ca Sc Ti V Cr Mn F'e C'o I~i C'u 

Fig. 3. Changes  in the  ene rg ies  of  the  4 s + 3 d  va l ence  shell,  the  A r  
core,  and  the H a r t r e e - F o c k  a tom in M[Ar]4s23d N ~ M[Ar ]4s ' 3d  N+ '. 

e3az(21) 

1" AEz(2) 

e4sZ(2  2) 

g3dz(121) 
e4~1(11) 

T agz(12) 
e3dz(11) 

e. (12 1" 

earn(22) 

(22a) (22b) (22c) 

In Sc, Z can be read as 2 in both Ea~z and E3az. The 
ionizable orbital energies are E3d~(22) and E4~z(22) in 
Eq. (22a), and E3dZ(11) and easl(11) in Eq. (22c). In 
both of those pairs, we compare one electron in 4s 
versus a different electron in 3d. 

In the aufbau process we want to compare the same 
electron Z in 4s versus 3d. This comparison is made 
in A~z(2), A~z(12), and AEz(1). In Eq. (22a) 
Aez(2) = AEnv(2) > AEnv because e3az(2 ~) is too high, 

since orbital set 2 is not consistent with configuration 
1. In Eq. (22c) Aez(1) = AEHF(1) < AEHF because e4~z(12) 
is too high, since orbital set 1 is not consistent with 
configuration 2. The average A~z(12), given by Eq. (6) 
and shown in Eq. (22b), is close to AEHv (see Table 
3). 

Fig. 4 shows the configurative orbital energies ¢4~z(122) 
and ~3dz(12 ~) from Ca to Cu. These curves are an 
improvement over those of Latter [13] that appear in 
textbooks [14]. Notice that in all of these atoms except 
Cr and Cu, ~4sz(122) lies below 63dz(12~). Hence the 
ground configuration selected by the configurative or- 
bital energies is M[Ar]4s23d N for all of these atoms 
except Cr and Cu, and M[Ar]4s~3d u+~ for Cr and Cu. 

The success of VPD [6] at finding a single set of 
orbitals for the average energy of a configuration suggests 
that a single set can be found with spin-orbital energies 
close to gasz(122) and ~3dZ(121). 

3.4. Additive orbital energies 

Table 2 gives values of - e i  for Ca to Cu, and for 
Fe values of -V',/2, T,e, and ~ r  from Eq. (21) via 
Slater's rules [12(b)]. Slater's rules work fairly well 
through the Ar core, but their estimate of ]r3d is poor. 
Slater acknowledged that "the rules are far from quan- 
titative..." [12(b)]. 

Slater noted that the force on an electron, and hence 
the form of its wave function that gives its kinetic 
energy, is determined by its inner shielding [12(a)]. By 
design, each ei includes only the inner shielding, while 
its counterpart Ei includes both inner and outer shielding. 

In a given atom and configuration, the Hartree-Fock 
model uses the same orbitals, with the same T,e, for 
all electrons within a subshell. Then Eq. ( l lb)  shows 
that any difference in e/ equals the difference in V',. 
For example, Fe in Table 2 has e3dz(11) - 
g3dN(11) = ~'t3dZ(11) -- V',3oN(11). 

Tab le  3 
Conf igura t ive  

to AE~.p [111 

orbi ta l  energ ies  and  f rozen-orbi ta l  approx ima t ions  to  A E ~  for M[Ar]4s23d N ~ M[Ar ]4s ' 3d  j r+ '  c o m p a r e d  to  AEH~ [9,10] and  

(see Eqs.  (3 ) - (6 ) )  

Aez(2) Aez(1) - #,~z(122) - #3dZ(12') A#z(12) AEHv AE~,p 

Ca ~ 0.0856 0.0748 0.1982 0.1180 0.0802 0.0809 0.0928 
Sc 0.0867 0.0058 0.2135 0.1672 0.0463 0.0369 0.0524 

Ti 0.0885 - 0.0311 0.2228 0.1941 0.0287 0.0199 0.0296 
V 0.0879 - 0.0624 0.2308 0.2180 0.0127 0.0046 0.0090 
Cr  0.0452 - 0.1244 0.2376 0.2772 - 0.0396 - 0.0466 - 0.0369 
Mn  0.2511 0.0099 0.2454 0.1149 0.1305 0.1223 0.0788 

Fe  0.1967 - 0.0534 0.2601 0.1884 0.0716 0.0660 0.0322 
Co 0.1967 - 0.0769 0.2737 0.2138 0.0599 0.0562 0.0153 
Ni  0.1982 - 0.1006 0.2866 0.2378 0.0488 0.0469 - 0.0011 
Cu 0.1445 - 0.1723 0.2985 0.3124 - 0.0139 - 0.0137 - 0.0548 

F r o m  the  orbi ta ls  in Tab le  1 and  Ref .  [10]. 
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Fig. 4. The  conflgurative orbital energy of electron Z in 4s2 of 
M[Ar]4s~3d N and in 3 d N +  1 of M[Ar]4s~3d N÷~, each averaged over 
orbital sets 1 and 2. 
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Fig. 5. The  additive orbital energy of electron Z in 4s2 of M[Ar]4s23d ~v 
and in 3 d N +  1 of  M[Ar]4s~3d N+~. 

To compare electrons in different subshells, it is best 
to use their average values e,e. The relative values of 
V'o,e/2 and - T , e  are close to those of e,e. See how 
similar the values of -V'~J2 and T~¢ are to those of 
-6,~ for Fe in Table 2. 

Since ~'t,,,= -Z~,,e, the relative values of -e,,e also 
give a qualitative comparison of inverse size, 1~,,. 
Relative values of V't,e/2, T,e, and l ~ e  are indicated 
much better by 6,e than by ~,e. For example, ~3d is 
slightly higher in V4s13d 4 (-0.3208) than in Sc4s23d ~ 
( - 0.3437). Yet e3d is much lower in V ( - 3.7888) than 
in Sc (-2.8338), indicating the correct order of 
V'~3J2 (-3.9217 versus -2.9545), ~3d (4.0545 versus 
3.0752), and l~,e (0.9092 versus 0.7990) [9]. 

We recommend that ~,e be listed along with ~,e 
whenever atomic orbital energies are reported. The 
overbar can be dropped, as it was in Table 1. 

Fig. 5 shows that e3dz(11) lies below e4sz(22). The 
transition 4s23d N ~ 4s~3d n ÷~ always has Aez < 0, so 
it is never a promotion of electron Z in terms of ez. 
However, we shall see that the decrease in ez is often 

accompanied by a larger increase in the sum of the 
other ei. 

3.5. Components of AEv and AF. c in M[Ar]4se3d N 
M[ Ar]4s13dN + 1 

The components of the changes in the valence and 
core energies in Eqs. (13) and (14b) are shown in Fig. 
6. All of these changes can be rationalized as follows. 
When electron Z falls from 4s to 3d, its penetration 
of the 3s, 3p, and the other 4s and 3d electrons increases. 
From the frozen-orbital viewpoint of each other 4s 
or 3e electron i, its inner screening increases by 
A/~(2)=R3dzi(21)-R4~zi(22). From Eq. ( l la)  its 
Aei(2) = AR,(2). When its orbital is unfrozen, the orbital 
has too much inner screening to stay the same size, 
so it expands. However, when the 4s and 3e orbitals 
expand, their penetration of the ls, 2s and 2p electrons 
decreases. The ls, 2s and 2p orbitals shrink slightly, 
as seen in their e,e and confirmed in their 1~,¢ [9]. 

In the above analysis for ni>2, the frozen A/~u(2) 
is the cause of the frozen Ae~(2) and the unfrozen Ae~. 
However, the interplay among the unfrozen orbitals 
can make the unfrozen ARt/unrecognizable as a cause 
of Ag~. In fact, an inverse correlation exists between 
Ad3dN and / ~ 3 d  N .  Further analysis of Ad3dN via Eq. 
(11a) shows that AT3d--AZ~3d has a maximum at Mn, 
but ARt3oN has a minimum at Mn, in spite of a maximum 
there in -AXt3dN. Analysis of Ad3p shows that 
A]rap- ~ 3 p  has a minimum at Mn, but AR,3p is nearly 
zero from Ca to Cu. 

The negative slope of Aez is slightly greater in mag- 
nitude than the positive slope of N AdadN, so their 
sum has a slight generally negative slope. That sum 
plus the small positive values and slope of Ae4sl gives 
/~kg v . 

The trends in 6 Ae3p a r e  like those in 2 Ad3s, although 
per electron Ad3p > Ad3~. These trends determine those 
in AE¢, because AEN. is fairly constant. 

0 5  

6- --1.5 

--2.5 
5 ~ . NAe3d.~ / 

4 ~ , ~  --3.5 

3 -4.5 

2- \ --5,5 

6Ae3p ~ ~______~ 
1- ~ :,, ' , ~  _, --6.5 

0 ~ = ~. .t J. = A .L '~ -7.5 

-1 Ca Sc Ti V Cr Mn Fe Co Ni Cu 8.5 

Fig. 6. Changes in the additive energies of the valence electrons Z, 
3d N, and 4sl ,  and of the Ar  core electrons 3s 2, 3p 6, and Ne core 
in M[Ar]4s23d x ~ M[Ar]4sl3d N÷~. Each asterisk just below 2 ~ 3 s  

is Ae4~. 
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3.6. AE~ and AEc in M[Ar]4s23d u 
M[Ar]4s13d lv+1 

Fig. 3 shows the changes in the valence and core 
energies AEv and AEc, and their sum AErw(atom). AEv 
looks a lot like -A~,~ in Fig. 2, but on an amplified 
scale. AEc shows a strong negative correlation with 
-AXe,  also amplified. The dominant feature in all 
these plots is the jump from Cr to Mn. We divided 
each such jump in Fig. 3, e.g., AEv(Mn)-AEv(Cr), by 
-A~, , (Mn) + AX,~,(Cr) to compute the factors by 
which -A.,Y~, appears to be amplified in AEv, AEc, and 
AEHF. With the m e orbitals, these factors are 3.2, - 2.0, 
and nearly 1.2, respectively. With the real orbitals, the 
factors are even greater at 3.6, -2.3, and 1.3. In either 
case, the effects of -AXw on AEv, AEc, and AEHv are 
stunning. 

4. Conclusions 

The average valence orbital energies customarily given 
for M[Ar]4s23d u are not well suited to predict ionization 
energies or the energy of transition to M[Ar]4s'3d N+'. 
The ionizable valence orbital energies are •4s2(2 z) and 
• 3tuv(22). The ionization energy I3d N and its estimate 
-e3~(22) are strongly correlated with the valence 
exchange energy 2Xv3,~v(22). The configurative orbital 
energies gas2(122) and i3,wr+1(121) select the ground 
configuration by approximating AEHF for M[Ar]4sZ3d N 

M[Ar]4s13d N+'. 
Orbital energies ei that include only the inner re- 

pulsion R, of other electrons are additive. The Har- 
tree-Fock energy of any group of subshells such as 
core, valence shell, or atom is given simply by Eq. 
(12b). Each g,e indicates T,e, V'ne/2, and 1~, e better 

than any • does. For M[Ar]4s23d N ~ M[Ar]4s '3d N+ 1, 
Eqs. (13)-(15) give meaningful values of AEv and AEc 
as well as AEHv(atom). The negative of the intervalence 
exchange energy -X,., appears to be tripled in its 
stabilization of the valence energy and doubled in its 
destabilization of the core energy. 
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